|
The rubidium-strontium dating method is a radiometric dating technique used by scientists to determine the age of rocks and minerals from the quantities they contain of specific isotopes of rubidium (87Rb) and strontium (87Sr, 86Sr). Development of this process was aided by German chemists Otto Hahn and Fritz Strassmann, who later went on to discover nuclear fission in December 1938. The utility of the rubidium-strontium isotope system results from the fact that 87Rb (one of two naturally occurring isotopes of rubidium) decays to 87Sr with a half life of 48.8 billion years. In addition, Rb is a highly incompatible element that, during partial melting of the mantle, prefers to join the magmatic melt rather than remain in mantle minerals. As a result, Rb is enriched in crustal rocks. The radiogenic daughter, 87Sr, is produced in this decay process and was produced in rounds of stellar nucleosynthesis predating the creation of the Solar System. Different minerals in a given geologic setting can acquire distinctly different ratios of radiogenic strontium-87 to naturally occurring strontium-86 (87Sr/86Sr) through time; and their age can be calculated by measuring the 87Sr/86Sr in a mass spectrometer, knowing the amount of 87Sr present when the rock or mineral formed, and calculating the amount of 87Rb from a measurement of the Rb present and knowledge of the 85Rb/87Rb weight ratio. If these minerals crystallized from the same silicic melt, each mineral had the same initial 87Sr/86Sr as the parent melt. However, because Rb substitutes for K in minerals and these minerals have different K/Ca ratios, the minerals will have had different Rb/Sr ratios. During fractional crystallization, Sr tends to become concentrated in plagioclase, leaving Rb in the liquid phase. Hence, the Rb/Sr ratio in residual magma may increase over time, resulting in rocks with increasing Rb/Sr ratios with increasing differentiation. Highest ratios (10 or higher) occur in pegmatites. Typically, Rb/Sr increases in the order plagioclase, hornblende, K-feldspar, biotite, muscovite. Therefore, given sufficient time for significant production (ingrowth) of radiogenic 87Sr, measured 87Sr/86Sr values will be different in the minerals, increasing in the same order. ==Example== For example, consider the case of an igneous rock such as a granite that contains several major Sr-bearing minerals including plagioclase feldspar, K-feldspar, hornblende, biotite, and muscovite. Each of these minerals has a different initial rubidium/strontium ratio dependent on their potassium content, the concentration of Rb and K in the melt and the temperature at which the minerals formed. Rubidium substitutes for potassium within the lattice of minerals at a rate proportional to its concentration within the melt. The ideal scenario according to Bowen's reaction series would see a granite melt begin crystallizing a cumulate assemblage of plagioclase and hornblende (i.e.; tonalite or diorite), which is low in K (and hence Rb) but high in Sr (as this substitutes for Ca), which proportionally enriches the melt in K and Rb. This then causes orthoclase and biotite, both K rich minerals into which Rb can substitute, to precipitate. The resulting Rb-Sr ratios and Rb and Sr abundances of both the whole rocks and their component minerals will be markedly different. This, thus, allows a different rate of radiogenic Sr to evolve in the separate rocks and their component minerals as time progresses. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Rubidium-strontium dating」の詳細全文を読む スポンサード リンク
|